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Abstract. The relativistic two-body system in (1 + 1)-dimensional quantum electrodynamics is
studied. It is proved that the eigenvalue problem for the two-body Hamiltonian without the self-
interaction terms reduces to the problem of solving a one-dimensional stationary Schrödinger-type
equation with an energy-dependent effective potential which includes the δ-functional and inverted
oscillator parts. The conditions determining the metastable energy spectrum are derived, and the
energies and widths of the metastable levels are estimated in the limit of large particle masses. The
effects of the self-interaction are discussed.

1. Introduction

In the study of two-body systems in quantum theory we often use single-particle equations.
For hydrogen-like systems, for instance, we assume that one of the particles is much heavier
(proton) and then reduce the two-body problem to the problem of motion of the lighter particle
(electron) in an external field of the heavier one. To get a more exact solution we need to take
into account two-body effects and start with a two-body equation.

As shown in [1], in (1 + 1) dimensions the single-particle Dirac equation allows no
hydrogen. The equation has solutions for a continuous set of energies, and the probability
of finding the electron infinitely separated from the proton remains finite at all times. Despite
the attractive force, the electron and proton are not confined in a hydrogen-like system with
discrete energy levels. That happens not only for hydrogen atoms with an infinitely heavy
source of potential, but also for positronium-like systems.

In this paper, we want to clarify to what extent the two-body effects influence the result
of [1]. We aim to study a relativistic two-body system in (1 + 1)-dimensional quantum
electrodynamics (QED) by making use of a two-body Dirac equation. Models in (1 + 1)
dimensions are known to be useful as simpler models for discussion of many-body aspects of
particle physics; in particular, spontaneous positron production by supercritical potentials [2,3].

To describe two-body systems we usually introduce a composite field, and there are two
ways of deriving equations on this field. If we rewrite the action of the two-body system
entirely in terms of the composite field, then we can require the action to be stationary with
respect to the variations of this field only. This way leads to a single two-body equation [4–6].
However, if we first vary the action with respect to the individual fields, then we come to a
pair of coupled equations on the composite field. The pair of Dirac equations formulation of
the two-body problem was given in [7, 8] in the framework of the constraint approach. The
main difference between the two ways is in the role of the relative energy (or its conjugate
variable, the relative time). While in the first way the relative energy drops out of the two-body
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equation automatically, in the pair of Dirac equations formulation it is eliminated by using the
compatibility condition of the two equations and a special choice of the interaction potential.

In this paper we follow the single two-body equation formulation and work in the first-
quantized version of QED when both matter and electromagnetic fields are not quantized. We
consider a system of two massive Dirac fields minimally coupled to a U(1) or electromagnetic
field. The electromagnetic field has no separate local degrees of freedom and can be eliminated
between the coupled Maxwell–Dirac equations, but then nonlinear self-field terms must be
included. In section 2, we derive a relativictic two-body equation in the self-field QED1+1

defined on the line and give the Hamiltonian form of this equation. In section 3, we find the
eigenfunctions and the spectrum of the two-body Hamiltonian. We study in detail two cases:
(i) free motion; (ii) the Coulomb interaction, and discuss the effects of the self-interaction.
Section 4 contains our conclusions.

2. Two-body equation

For our system, the action is

W =
∫ ∞

−∞
dt
∫ ∞

−∞
dxL(x, t)

L =
2∑

k=1

[ψkγ
µ(ih̄c∂µ − ekAµ)ψk −mkc

2ψkψk] − 1
4FµνF

µν

(2.1)

where (µ, ν = 0, 1), γ 0 = −iσ2, γ 0γ 1 = γ 5 = σ3, σi (i = 1, 3) are Pauli matrices. The fields
ψk are two-component Dirac spinors, and ψ̄k = ψ�

k γ
0. The partial derivatives are defined as

∂0 = ∂/c∂t , ∂1 = ∂/∂x.
The electromagnetic field equations deduced from the action (2.1) are

∂νF
νµ = Jµ (2.2)

where the total matter current

Jµ =
2∑

k=1

ekψ̄kγ
µψk

is conserved, ∂µJµ = 0.
In the Coulomb gauge A1(x, t) = 0, equations (2.2) take the form

∂2
1A0 = −J 0

∂1∂0A0 = J 1.

These two equations reduce in fact to each other because of the total current conservation and
are solved by

A0(x, t) = −
∫ ∞

−∞
dyD(x, y)J 0(y, t) (2.3)

where the Green function is

D(x, y) = 1
2 |x − y|.

In contrast with the situation on the circle, the electromagnetic field on the line has not a
global physical degree of freedom and can be therefore eliminated from the action completely.
If we insert (2.3) into equation (2.1), we obtain the action in the Coulomb gauge as

W [ψ,A] =
∫ ∞

−∞
dt
∫ ∞

−∞
dx

2∑
k=1

ψk(γ
µih̄c∂µ −mkc

2)ψk

+ 1
2

∫ ∞

−∞
dt
∫ ∞

−∞
dx
∫ ∞

−∞
dyJ 0(x, t)D(x, y)J 0(y, t). (2.4)
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We could vary the action (2.4) with respect to individual fields ψ1 and ψ2 separately.
This results in nonlinear coupled Hartree-type equations for these fields. Instead, we use a
relativistic configuration space formalism [4, 5] to take into account the long-range quantum
correlations. We define a composite field � by

�(x1, t |x2, t) ≡ ψ1(x1, t)⊗ ψ2(x2, t)

which is a four-component spinor field. The configuration space (x1, x2) is two-dimensional
Euclidean space R2.

We can rewrite our action (2.4) entirely in terms of the composite field �. The resultant
action is [9]

W[�,A] =
∫ ∞

−∞
dt
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2�̄(x1, t |x2, t){(cγ µp(1),µ −m1c

2)⊗ γ 0

+γ 0 ⊗ (cγ µp(2),µ −m2c
2) + 1

2 (γ
0 ⊗ γ 0)(e1φ

self
(1) + e2φ

self
(2) )

+e1e2(γ
0 ⊗ γ 0)D(x1, x2)}�(x1, t |x2, t) (2.5)

where

p(i),µ ≡ ih̄
∂

∂x
µ

i

and

φself
(1) (x, t) = e1

∫ ∞

−∞
dy
∫ ∞

−∞
dzD(x, z)�̄(z, t |y, t)(γ 0 ⊗ γ 0)�(z, t |y, t)

φself
(2) (x, t) = e2

∫ ∞

−∞
dy
∫ ∞

−∞
dzD(x, y)�̄(z, t |y, t)(γ 0 ⊗ γ 0)�(z, t |y, t)

the self-potentials φself
(k) being nonlinear integral expressions. The spin matrices are written

here in the form of tensor products ⊗, the first factor always referring to the spin space of
particle 1, the second to particle 2.

Now we require the action (2.5) to be stationary, not with respect to the variation of the
individual fields but with respect to the composite field only. This leads to the following
two-body wave equation:{
(γ µπ(1),µ−m1c)⊗ γ 0 + γ 0 ⊗ (γ µπ(2),µ−m2c)+

e1e2

c
(γ 0⊗γ 0)D(x1, x2)

}
�(x1, t |x2, t) = 0

(2.6)

where the generalized (kinetic) momenta π(i),µ are given by

π(i),µ = p(i),µ +
ei

c
Aself
(i),µ

with

Aself
(1),0 ≡ φself

(1) Aself
(2),0 ≡ φself

(2)

and

Aself
(1),1 = Aself

(2),1 = 0.

In the centre-of-mass and relative coordinates

# = π(1) + π(2) π = π(1) − π(2)

P = p(1) + p(2) p = p(1) − p(2)

x+ = x1 + x2 x− = x1 − x2
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the function D(x1, x2) becomes

D(x1, x2) = D−(x−) = 1
2 |x−|,

i.e. depends only on the relative coordinate x− and is symmetric.
The two-body equation, first without the self-field terms, takes the form[

%µPµ + kµpµ +
e1e2

c
(γ 0 ⊗ γ 0)D−(x−)−m1cI ⊗ γ 0 −m2cγ

0 ⊗ I
]
�(x−, t |x+, t) = 0

where

%µ ≡ 1
2 (γ

µ ⊗ γ 0 + γ 0 ⊗ γ µ)

kµ ≡ 1
2 (γ

µ ⊗ γ 0 − γ 0 ⊗ γ µ)

and I is the identity matrix. We see that k0 vanishes, which means that the relative energy p0

drops out of the equation automatically and we get[
%0P 0−%1P 1−k1p1+

e1e2

c
(γ 0 ⊗ γ 0)D−(x−)−m1cI ⊗ γ 0−m2cγ

0 ⊗ I
]
�(x−, t |x+, t) = 0.

(2.7)

Thus we have one time variable conjugate to the centre-of-mass energy cP 0, one degree of
freedom for the centre-of-mass momentum P 1 and one degree of freedom for the relative
momentum p1. The relative energy does not enter because of our choice of the composite field
� when individual fields are taken at the same time.

Since P 0 is the ‘Hamiltonian’ of the system, by multiplying (2.7) by %−1
0 we obtain the

Hamiltonian form of the two-body equation

P0� =
(
α+P

1 + α−p1 − e1e2

c
D− + β1m1c + β2m2c

)
� (2.8)

with

α± ≡ 1
2 (α1 ± α2) α1 ≡ γ 5 ⊗ I α2 ≡ I ⊗ γ 5

β1 ≡ γ 0 ⊗ I β2 ≡ I ⊗ γ 0

and the relative and centre-of-mass terms in the Hamiltonian P0 being additive:

P0 = Hcm + Hrel

Hcm ≡ α+P
1

Hrel ≡ α−p1 − e1e2

c
D− + β1m1c + β2m2c.

Equation (2.8) has the form of a generalized Dirac equation, now a four-component wave
equation.

With the self-potential terms the Hamiltonian form of the two-body equation becomes

P0� =
(
α+P

1 + α−p1 − 1

c
φ− − e1

c
φself
(1) − e2

c
φself
(2) + β1m1c + β2m2c

)
�

where

φ− = e1e2D−.

The self-potentials break, in general, the above-mentioned additivity of the centre of mass and
relative parts of P0.
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3. Spectrum

Let us find the eigenfunctions and the spectrum of P0. The equation for the eigenfunctions is

(α+P
1 + α−p1 + β1m1c + β2m2c)� = 1

c
(E + φ̃)� (3.1)

where

P 1 = 2ih̄
∂

∂x+
p1 = 2ih̄

∂

∂x−
and

φ̃ ≡ φ− + e1φ
self
(1) + e2φ

self
(2) .

If we denote the components of the composite field � as

�11 ≡ η1 �12 ≡ η2

�21 ≡ η3 �22 ≡ η4

then (3.1) reduces to the system of four equations:

2ih̄
∂

∂x+
η1 − 1

c
(φ̃ + E)η1 = −m1cη3 −m2cη2

2ih̄
∂

∂x+
η4 +

1

c
(φ̃ + E)η4 = m1cη2 + m2cη3

(3.2a)

2ih̄
∂

∂x−
η2 − 1

c
(φ̃ + E)η2 = −m1cη4 −m2cη1

2ih̄
∂

∂x−
η3 +

1

c
(φ̃ + E)η3 = m1cη1 + m2cη4.

(3.2b)

We see from these equations that

η�1(E, e1, e2) = η4(E, e1, e2) (3.3a)

η�2(E, e1, e2) = η3(E, e1, e2), (3.3b)

i.e. only half of all solutions of equations (3.2a), (3.2b) are independent and correspond to
physical particles.

It is more convenient to introduce the combinations

η± ≡ η2 ± η3

χ± ≡ η1 ± η4

and use them instead of the original componenets ηi (i = 1, 4). The system of
equations (3.2a), (3.2b) takes the form

2ih̄
∂

∂x+
χ+ − 1

c
f χ− = (0m)cη−

2ih̄
∂

∂x+
χ− − 1

c
f χ+ = −Mcη+

(3.4a)

2ih̄
∂

∂x−
η+ − 1

c
f η− = (0m)cχ−

2ih̄
∂

∂x−
η− − 1

c
f η+ = −Mcχ+

(3.4b)

where M ≡ m1 + m2, 0m ≡ m1 −m2, and f = φ̃ + E.
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Without loss of generality, we can take masses equal to each other, m1 = m2 ≡ m. Then
the eigenfunctions χ− and η− are determined by χ+ and η+, respectively:

χ− = 1

f
2ih̄c

∂

∂x+
χ+

η− = 1

f
2ih̄c

∂

∂x−
η+

while χ+ and η+ are related by

T−η+ = −2mcχ+ (3.5a)

T+χ+ = −2mcη+ (3.5b)

where

T± ≡ −4h̄2c
∂

∂x±

1

f

∂

∂x±
− 1

c
f. (3.6)

Acting on (3.5a) by T− and on (3.5b) by T+, we easily decouple χ+ and η+ and
rewrite (3.5a), (3.5b) equivalently as

T+T−η+ = 4m2c2η+ (3.7a)

T−T+χ+ = 4m2c2χ+. (3.7b)

In what follows we assume for the eigenfunctions the ansatz

η±(x−, x+) = exp

(
i

h̄
Pcmx+

)
η±(x−)

χ±(x−, x+) = exp

(
i

h̄
Pcmx+

)
χ±(x−)

i.e. separate their x+-dependent part from the x−-dependent one. Here Pcm is a momentum
conjugate to the centre-of-mass coordinate x+, so we can call it ‘the centre-of-mass motion
momentum’.

3.1. Free motion

If we neglect both mutual and self-interactions, i.e. put φ̃ = 0, then we get a system of two
‘free’ particles. The relations (3.3a), (3.3b) become

η1(−E) = η4(E)

η2(−E) = −η3(E)

i.e., the negative energy solutions of η1 and η2 coincide correspondingly with the positive
energy solutions of η4 and η3. Therefore we may consider either positive and negative energy
solutions of η1 and η2 or only positive energy solutions of all four equations (3.2a), (3.2b) as
physical particles.

For φ̃ = 0, the operators T− and T+ commute, so equations (3.7a) and (3.7b) coincide
with each other. Their solution is

η+(x−) = sin

(
1

h̄
κx−

)

χ+(x−) = 2mc2E

E2 − 4c2P 2
cm

sin

(
1

h̄
κx−

)
where

κ ≡ E

2c

√
E2 − 4c2P 2

cm − 4m2c4

E2 − 4c2P 2
cm

.
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Figure 1. The spectrum of the two-body system forPcm = 0; (a) free motion; (b) with the Coulomb
interaction. The width of the metastable states is not shown.

For the other two components, we have

η−(x−) = i
2cκ

E
cos

(
1

h̄
κx−

)

χ−(x−) = − 4mc3Pcm

E2 − 4c2P 2
cm

sin

(
1

h̄
κx−

)
.

This solution exists for all energies for which

|E| � 2mc2

√
1 +

P 2
cm

m2c2

and there is a ‘forbidden’ band in between (see figure 1(a)).

3.2. Coulomb interaction

Let us now consider our two-body system in the presence of the Coulomb interaction and
neglect only self-field terms. The relations (3.3a), (3.3b) take the form

η1(−E,−e1e2) = η4(E, e1e2)

η2(−E,−e1e2) = −η3(E, e1e2)

i.e. the negative-energy solutions of η1 and η2 coincide correspondingly with the positive-
energy solutions of η4 and η3 of opposite sign of e1e2.

For φ̃ = φ−, equation (3.7a) for η+ reduces to the second-order differential equation

∂2η+

∂x2−
− 1

f

(
∂f

∂x−

)
∂η+

∂x−
+

1

4h̄2c2
f 2η+ = m2c2

h̄2

f 2

f 2 − 4c2P 2
cm

η+. (3.8)

If in (3.8) we make the substitution

η+(x−) =
√
f · σ(x−)

then we find, for σ , the following Schrödinger-type equation:

−d2σ

dx2−
+ V (x−)σ = Kσ (3.9)



4498 N Dombey and F M Saradzhev

with the ‘potential’

V (x−) ≡ − 1

2f

d2f

dx2−
+

3

4

(
1

f

df

dx−

)2

− 1

4h̄2c2
f 2 +

4m2c4P 2
cm

h̄2(f 2 − 4c2P 2
cm)

and the ‘energy’

K ≡ −m2c2

h̄2 .

The last term in the potential represents the centre-of-mass motion contribution which vanishes
for Pcm = 0 as well as for all values of Pcm in the massless case.

The explicit form of the potential for Pcm = 0 is

V (x−) = −1

s
δ(x−) + Ṽ (x−)

where s ≡ 2E
e1e2

, and

Ṽ (x−) = 3

4

1

(|x−| + s)2
− 1

16h̄2c2
(e1e2)

2(|x−| + s)2. (3.10)

The potential V (x−) has several pecularities. First, it contains a δ-functional part with
coefficient (−1/s), positive (for e1e2 > 0 and E < 0 or e1e2 < 0 and E > 0) or negative
(for e1e2 > 0 and E > 0 or e1e2 < 0 and E < 0). The form of V (x−) for different signs
of the δ-function coefficient is shown in figures 2 and 3. Secondly, its regular part Ṽ (x−)
includes the inverted x2 potential (the last term in equation (3.10)). This kind of potential is
known to appear in barrier penetration problems, splitting in double wells, and tunnelling out
of traps [10–12]. In our case, the appearance of the inverted x2 potential is a consequence of
the fact that in one spatial dimension the Coulomb potential is linear. The systematic study of
the inverted oscillator is given in [13]. The presence of the inverted x2 potential makes V (x−)
nonvanishing at |x−| → ∞ and indicates that the particles are not confined in a stable system.

The regular part Ṽ (x−) is symmetric with respect to x−, Ṽ (−x−) = Ṽ (x−). For very
small nonzero x−, |x−| � |s|, Ṽ (x−) is approximately linear:

Ṽ (x−) ≈ Ṽ0 −
[

3

2

1

s2
+

1

8h̄2c2
(e1e2)

2s

]
|x−|

where

Ṽ0 ≡ Ṽ (x− = 0) = 3

4

1

s2
−
(e1e2

4h̄c

)2
s2.

The value Ṽ0 is positive for E2 <
√

3
2 h̄c|e1e2| and negative for E2 >

√
3

2 h̄c|e1e2|.
While σ(x−) is continuous for all x−, its first derivative dσ/dx− changes discontinuously

at the point x− = 0. This is because of the δ-functional potential in the Schrödinger equation
for σ . If we integrate both parts of (3.9) over an infinitely small interval (−ε, ε), ε � 1, and
then take the limit ε → 0+, we get the matching condition

dσ

dx−
(+0)− dσ

dx−
(−0) = −1

s
σ (0). (3.11)

The Schrödinger equation (3.9) taken without the centre-of-mass motion contribution to
the potential can be solved exactly. With the substitution

σ(x−) = z3/4 exp
(
−i

z

2h̄c

)
u(z)
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Figure 2. The form of the potential V (x−) in the case of equal masses and without the self-field

terms for s > 0, i.e., for e1e2 > 0, E > 0 or e1e2 < 0, E < 0. Only the case E2 <
√

3
2 h̄c|e1e2| is

shown.
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Figure 3. The form of the potential V (x−) in the case of equal masses and without the self-field

terms for s < 0, i.e., for e1e2 > 0, E < 0 or e1e2 < 0, E > 0. Only the case E2 >
√

3
2 h̄c|e1e2| is

shown.

where z ≡ 1
4e1e2(|x−| + s)2, and away from the origin (x− �= 0 or z �= z0 ≡ 1

4e1e2s
2 =

E2/e1e2) the equation becomes

z
d2u

dz2
+
(

2 − i
z

h̄c

) du

dz
−
(

i

h̄c
− K

e1e2

)
u = 0.
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The first independent solution of this equation is

u1 = F

(
1 + iβ, 2; iz

h̄c

)
β ≡ Kh̄c

e1e2
,

i.e. the confluent hypergeometric function. The integral representation for u1 is [14]

u1 = 2 exp
(

i
z

2h̄c

)
Re

[
1

%(1 + iβ)
exp

(
i
z

2h̄c

)( iz

h̄c

)−1+iβ

G

(
1 − iβ,−iβ; iz

h̄c

)]
.

The definition and some useful formulae for the function G are given in the appendix. The
asymptotic behaviour of the first solution is

σ1(|z| → ∞) ≈ 2h̄ce− π
2 β

|%(1 + iβ)|z
−1/4 sin

( z

2h̄c
+ β ln

z

h̄c
+ δ
)

δ ≡ arg%(1 − iβ).

The second independent solution is

u2 = −2 exp
(

i
z

2h̄c

)
Im

[
1

%(1 + iβ)
exp

(
i
z

2h̄c

)( iz

h̄c

)−1+iβ

G

(
1 − iβ,−iβ; iz

h̄c

)]
.

Its asymptotic behaviour is

σ2(|z| → ∞) ≈ 2h̄ce− π
2 β

|%(1 + iβ)|z
−1/4 cos

( z

2h̄c
+ β ln

z

h̄c
+ δ
)
.

If we write the total solution

σ = Aσ1 + Bσ2

where A and B are arbitrary constants, and use the matching condition (3.11) which in terms
of z becomes

σ ′(z0)

σ (z0)
= −1

4

1

z0

then we get the following relation between A and B:

A

B
= −4z0σ

′
2(z0) + σ2(z0)

4z0σ
′
1(z0) + σ1(z0)

the prime indicating the derivation with respect to z.
Asymptotically the total solution behaves as

σ(|z| → ∞) ≈ h̄ce− π
2 β

|%(1 + iβ)|z
−1/4

{
(B − iA) exp

(
i
z

2h̄c
+ iβ ln

z

h̄c
+ iδ

)

+(B + iA) exp

(
− i

z

2h̄c
− iβ ln

z

h̄c
− iδ

)}
.

Regardless of values of the constants A and B, σ does not vanish at |z| → ∞ and cannot
represent bound states. For B + iA = 0, the solution behaves at infinity as a diverging wave.
Such behaviour is specific for metastable states. The condition determining the metastable (or
quasi-discrete) energy levels is then

σ ′
1(z0)− iσ ′

2(z0)

σ1(z0)− iσ2(z0)
= − 1

4z0
. (3.12)

With the expressions for σ1 and σ2, we rewrite (3.12) as

G′(1 − iβ,−iβ; iz0
h̄c
)

G(1 − iβ,−iβ; iz0
h̄c
)

= −i

(
1

2h̄c
+
β

z0

)
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and then, using the relation between G and its derivative (see the appendix), we finally arrive
at

ih̄c
β(1 − iβ)

z2
0

· G(2 − iβ, 1 − iβ; iz0
h̄c
)

G(1 − iβ,−iβ; iz0
h̄c
)

= 1

2h̄c
+
β

z0
. (3.13)

Metastable states are described by complex values of energy:

E = E0 − i
%

2
where E0 is the metastable level energy, while % is its width. For z0 we get

z0 = 1

e1e2

(
E2

0 − %2

4

)
− i

E0%

e1e2
.

We can solve equation (3.13) approximately for large values of m, m2 � h̄|e1e2|/c3. In
this approximation, |β| � 1, so

G(2 − iβ, 1 − iβ; iz0
h̄c
)

G(1 − iβ,−iβ; iz0
h̄c
)

≈ 1.

Equation (3.13) takes the form

iβ(1 − iβ) = 1

2

( z0

h̄c

)2
+ β

( z0

h̄c

)
which is solved by

E
(1)
0 ≈ ±mc2

√
1 +

√
3 ·
[

1 +
1

12

(
1 − 5

√
3

12

)
(e1e2h̄)

2

m4c6

]

%(1) ≈ |e1e2|h̄√
3mc

· 1√
1 +

√
3

and

E
(2)
0 ≈ ± e1e2h̄√

6mc
· 1

(1 +
√

3)3/2

%(2) ≈
√

2mc2 · (1 +
√

3)3/2.

There are therefore four metastable energy levels in the band between the positive- and negative-

energy continuums, the first two at the energies E(1)
0 ≈ ±mc2

√
1 +

√
3 = ±1.65mc2 and the

other two at the energies close to zero, E(2)
0 ≈ 0± (see figure 1(b)). For infinitely large values

of mass, m → ∞, the first two metastable energy levels turn into stable ones, %(1) → 0, while
the second two disappear, %(2) → ∞.

For e1e2 > 0, the positive-energy metastable levels correspond to the relative motion in
the potential V (x−) with s > 0, while the negative-energy ones in the potential with s < 0.
For e1e2 < 0, the metastable energy levels are positive for s < 0 and negative for s > 0.

In the massless case (β = 0), the solutions σ1 and σ2 become trigonometric functions:

σ1 = 2h̄cz−1/4 sin
( z

2h̄c

)
σ2 = 2h̄cz−1/4 cos

( z

2h̄c

)
.

The analogue of the condition (3.12) is

tan
( z0

2h̄c

)
= − i

2
.
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This condition does not fix E0, while for the level width we get % = ∞. This means that
in the massless case there are neither discrete nor quasi-discrete energy levels and the energy
spectrum is continuous.

The spectrum for χ+ can be derived analogously. It can be shown that equation (3.7b) for
χ+ also reduces to the Schrödinger-type equation with the potential

U(x−) = V (x−) +

[
1

f

∂2f

∂x2−
−
(

1

f

∂f

∂x−

)2
]

· 4c2P 2
cm + f 2

4c2Pcm − f 2
− 8

f 2
· c2P 2

cm

4c2P 2
cm − f 2

(
∂f

∂x−

)2

.

For Pcm = 0, the explicit form of U(x−) is

U(x−) = −3

s
δ(x−) + Ũ (x−)

Ũ(x−) = 7

4

1

(|x−| + s)2
− 1

16

(e1e2

h̄c

)2
(|x−| + s)2.

Acting along similar lines as above, we get the following metastable spectrum equation:

G′( 1
2 + 1√

2
− iβ, 1

2 − 1√
2

− iβ; iz0
h̄c
)

G( 1
2 + 1√

2
− iβ, 1

2 − 1√
2

− iβ; iz0
h̄c
)

= − i

2h̄c
−
(

1

2
+ iβ

)
1

z0
. (3.14)

For large values of m, this equation is solved by

E
(1)
0 ≈ ±mc2

√
1 +

√
3 ·
[

1 +
1

48

(
1 − 1

2
√

3

)
(e1e2h̄)

2

m4c6

]

%(1) ≈ h̄|e1e2|
2
√

3mc
·
√

1 +
√

3

and

E
(2)
0 ≈ ± e1e2h̄

2
√

6mc
· 1√

1 +
√

3

%(2) ≈ 2
√

2mc2 · 1√
1 +

√
3
.

The structure of the spectrum for χ+ is the same as in the case of η+. For infinitely large values
of m, the spectra for η+ and χ+ coincide exactly, while for large and finite values of m, the
corrections of the order (1/β) and (1/β2) are different.

3.3. Self-interaction

The self-interaction makes the spectrum problem essentially more complicated. Let us give
here a few comments concerning the effects of the self-field terms.

With the self-potentials φself
(1) , φself

(2) , the function f depends on both coordinates x− and
x+, and the operators T± acquire additional terms including the partial derivative (∂f/∂x+).
Moreover, we cannot assume, as before in the study of the Coulomb interaction, that the centre-
of-mass motion is free, with a momentum Pcm. This results in infinitely large values of the
self-potentials.

Indeed, in terms of the components ηi (i = 1, 4) the self-potentials take the form

φself
(1) (x) = e1

2

∫ ∞

−∞
dy−

∫ ∞

−∞
dy+D

(
x,

1

2
(y+ + y−)

) 4∑
i=1

η�i (y−, y+)ηi(y−, y+)

φself
(2) (x) = e2

2

∫ ∞

−∞
dy−

∫ ∞

−∞
dy+D

(
x,

1

2
(y+ − y−)

) 4∑
i=1

η�i (y−, y+)ηi(y−, y+).
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For the free centre-of-mass motion,

η�i (y−, y+)ηi(y−, y+) = η�i (y−)ηi(y−)

so the integrals
∫∞
−∞ dy+D(x,

1
2 (y+ ± y−)) diverge.

We cannot assume also that the dependence of the components on the coordinates x− and
x+ is factorized, because for a general form of f (x−, x+) such factorization is simply not valid.
Even in the case of the purely Coulomb interaction the factorization takes place only when
the motion of the centre of mass is free. To prove that, let us use for a moment the following
ansatz for the components η+ and χ+:

η+(x−, x+) = η+(x+)η+(x−)
χ+(x−, x+) = χ+(x+)χ+(x−).

With f = φ− + E, equation (3.5a) gives

η+(x+) = χ+(x+)

while equation (3.5b) becomes

1

χ+(x+)

d2χ+

dx2
+

= f 2χ+(x−)− 2fmc2η+(x−)
−4h̄2c2χ+(x−)

.

Since the left-hand side of this equation depends only on x+ and the right-hand side only on
x−, both sides must be equal to an arbitrary constant. Choosing the constant as (−P 2

cm/h̄
2),

we get

χ+(x+) = exp

(
i

h̄
Pcmx+

)
,

i.e. the factor corresponding to the free motion of the centre of mass (if the constant is taken
positive, say 1/R2

cm, where Rcm is a parameter of the dimension of length, then we come
to the factors exp(±x+/Rcm) which diverge at positive or negative infinity and are therefore
unacceptable).

The self-potentials are usually calculated by an iteration procedure. To lowest order of
iteration we solve the spectrum problem without the self-field terms. Then we substitute
the solution obtained into the expressions for the self-potentials, calculate these potentials
explicitly and use them in the next order of iteration. Thus, to get finite expressions for the
self-potentials and to continue the iteration procedure we need at the lowest order, i.e. in the
Coulomb interaction case, a general solution of the problem without the assumption of the free
motion of the centre of mass.

4. Conclusions

(1) We have shown that the spectrum problem for the two-body Hamiltonian in (1 + 1)-
dimensional QED reduces to the problem of solving a system of two second-order partial
differential equations . If the centre-of-mass motion of the two-body system is assumed
to be free, then these equations govern only the relative motion and take the form of
one-dimensional stationary Schrödinger-type equations with energy-dependent potentials
which include the δ-functional and inverted ocsillator parts.
We have solved the problem in the case of equal masses and the self-potentials neglected,
and derived the conditions determining the metastable energy levels. We have estimated
the energies and widths of the metastable levels for large values of mass. For the vanishing
mass, neither stable nor metastable levels exist, and the energy spectrum is continuous.
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Figure 4. The contour C1.

(2) Our consideration on the basis of the two-body equation without the self-field terms
does not change the result of the single-particle Dirac equation approach, namely, the
nonexistence of hydrogen-like systems in (1 + 1) dimensions. However, the two-body
equation, even with the self-interaction neglected, provides essentially new details: for
limited times the particles can be confined in a metastable system characterized by quasi-
discrete energy levels. For large values of the particle masses, the metastable system does
not decay for a long time, and its spectrum is close to a discrete one.

In the approximation of vanishing self-interaction, the Coulomb potential of mutual interaction
becomes the only static potential in the two-body equation (2.6) and is responsible for the
appearance of the inverted oscillator potential in the corresponding Schrödinger-type equations.
But the self-potentials also have static parts. To treat the problem completely it is therefore
necessary to take into account in the two-body equation the self-field terms. It is also of
principal importance to consider the centre-of-mass motion as a finite one, since for the free-
motion case the self-potentials take infinitely large values. This work is in progress.
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Appendix

The function G(α, γ ; z) is defined as

G(α, γ ; z) = %(1 − γ )

2π i

∫
C1

(
1 +

t

z

)−α
tγ−1et dt

where the contour C1 comes from infinity (Re t → −∞), goes round the point t = 0 and then
returns to infinity (see figure 4).

The asymptotic expansion of G for |z| → ∞ is

G(α, γ ; z) ≈ 1 +
αγ

z
+
α(α + 1)γ (γ + 1)

2!z2
+ · · · .

The relation between G and its derivative with respect to z is

G′(α, γ ; z) = −αγ

z2
G(α + 1, γ + 1; z).

Other relations are

G(α, γ ; z) = G(α + 1, γ ; z)− γ

z
G(α + 1, γ + 1; z)

G(α, γ + 1; z) = α

z
G(α + 1, γ + 1; z) + G(α, γ ; z)

and

G′(α, γ ; z) = α

z
[G(α, γ ; z)−G(α + 1, γ ; z)]

G′(α, γ ; z) = γ

z
[G(α, γ + 1; z)−G(α, γ ; z)].
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